
Language-Independent Bimodal System for
Early Parkinson’s Disease Detection?

Catherine Taleb1, Laurence Likforman-Sulem2 and Chafic Mokbel1

1 University of Balamand, Balamand El-Koura, Lebanon
2 LTCI/Telecom Paris/Institut Polytechnique de Paris, Paris, France

catherine.taleb@std.balamand.edu.lb

Abstract. Parkinson’s disease (PD) is a complex disorder character-
ized by several motor and non-motor symptoms that worsen over time,
and that differ from person to another. In the early stages, when the
symptoms are often incomplete, the diagnosis becomes difficult and at
times, the subject may remain undiagnosed. This difficulty is a strong
motivation for computer-based assessment tools that can aid in the early
diagnosing and predicting the progression of PD. Handwriting’s deterio-
ration, vocal and eye movement impairments may be ones of the earliest
indicators for the onset of the illness. A language independent model to
handwriting, speech signals, and eye movement’s recordings have been
recently collected. After succeeding in building language independent
models for PD early diagnosis using pure handwriting or speech, we
propose in this work language independent models based on bimodal
analyses (handwriting and speech), where both SVM and deep learning
models are studied. Our experiments show that classification accuracy up
to 100% can be obtained by our SVM model through handwriting/speech
bimodal analysis.

Keywords: Parkinson’s disease (PD), 2D CNN, 1D CNN-BLSTM, SVM,
1D CNN-MLP, handwriting, speech, data augmentation.

1 Introduction

PD is a neurological disorder caused by a decreased dopamine level on the brain.
This disease is characterized by motor and non-motor symptoms that worsen
over time. The motor symptoms consist of tremor, rigidity, slowness of movement
or bradykinesia, micrographia, and speech difficulty [20]. In advanced stages of
PD, clinical diagnosis is clear-cut. However, in the early stages, when the symp-
toms are often incomplete or subtle, the diagnosis becomes difficult and at times,
the subject may remain undiagnosed. Furthermore, there are no efficient and re-
liable methods capable of achieving PD early diagnosis with certainty [2]. The
difficulty in early detection is a strong motivation for computer-based assess-
ment tools/decision support tools/test instruments that can aid in the early
diagnosing and predicting the progression of PD [19]. Early detection of the
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disease could be hugely beneficial in order for the patient to have access to a
therapy that will slow down the course of PD progression. Handwriting’s dete-
rioration and vocal impairment may be ones of the earliest indicators for the
onset of the illness [21], [22]. According to the reviewed literature, a language
independent model to detect PD at early stages using multimodal signals has not
been enough addressed. In our previous works [5], and [6], language-independent
models for assessing the motor disorders in PD patients at early stages based on
handwriting features have been developed; where two approaches were studied
and compared: a classical feature extraction and classifier approach, and a deep
learning approach. Also in [18] a language independent model based on pure
speech analysis and SVM has been built. Approximately 97% classification ac-
curacy was reached with both modalities and approaches. The main contribution
of the present work is to build a language independent model for assessing the
motor disorders in PD patients at early stages based on bimodal analysis (hand-
writing and speech), where two different approaches are studied and compared:
handcrafted features and SVM, and deep learning.

The paper is organized as follows. In Section 2, we introduce our handwriting
and speech datasets. In Section 3 an overview of related work is provided. Sec-
tion 4 presents the bimodal system used for PD detection. We conducted several
experiments that are described in Section 5. Conclusions and perspectives are
drawn in Section 6.

2 Handwriting and Speech Datasets

Due to the lack of multimodal and multilingual PD database, a database (PD-
MultiMC) that includes handwriting tasks, speech samples, and eye movements
recordings has been collected from PD patients attending an experienced neurol-
ogist, in two phases (“on-state” (1 hour after taking L-dopa dosage for peak re-
sponse to medication) and “off-state” (12 hours after the last L-dopa medication
dosage)), and from Healthy control (HC) subjects selected from our entourage
and seen by a neurologist to make sure they don’t have any neurological disease.
21 PD patients (16 Males and 5 Females), and another 21 HC subjects (5 Males
and 16 Females) are included in PDMultiMC database. PD and HC subjects are
matching for age, years of education, and hand dominance. This database in-
cludes samples in three languages: 31 Arabic, 9 French, and 2 English and will be
released on the IAPR TC11 repository. Even though the language representation
is not balanced, language independence is somehow provided by averaging the
signal (speech or handwriting). This average can be considered as the summation
of a certain noise (summation of the average of channel information and the av-
erage of linguistic information) with disease characteristics; where the noise will
not interfere in the classification. The modified Hoehn and Yahr (mH&Y) scale
was measured to show the presence and the severity of PD motor symptoms. The
mean mH&Y of PD patients in our database is 1.81±0.77; where around 95%
of our PD patients show early to mild degree of disease severity. In this work,
we focus on handwriting and speech modalities for early PD detection, where
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handwriting and speech samples are taken from HandPDMultiMC and Speech-
PDMultiMC datasets (parts of PDMultiMC database). However, since our target
is the early detection of the disease and since collecting large database at early
stages is very difficult, and referring to [10] and [12], we make the assumption
that mild stages can get nearer early stages one hour after taking L-dopa med-
ication, since levodopa reduces the motor symptoms. For this reason, the seven
handwriting tasks and the two speech tasks recorded for each of the 42 subjects
in their “on-state” are studied and analyzed. Participants were asked to com-
plete handwriting and speech tasks; where these tasks were chosen in a manner
to highlight as much as possible the differences between PD and control, and
where neurologists were consulted in the process of selecting the tasks.

Handwriting samples were collected using Wacom intuos 5 tablet with a
sample rate of 197 points/s. The trace of the pen tip (X-Y-Z coordinate), the
pressure of the pen tip on the surface, the angles of the pen relative to the
tablet (altitude and azimuth), and timestamp were collected per sample point,
forming seven times series as the handwriting dynamic signals. The seven hand-
writing tasks and the captured handwriting dynamic signals for a given task
are displayed in Fig. 1. The first three tasks (with different degrees of complex-
ity) demand one continuous pen movement, similar to spiral and meander tasks,
which emphasis hypokinesia and tremor. Since there is no consensus on which
stroke type reflects better the disease, we have included different type of strokes
in the cursive tasks. From the other side, since PD patients have difficulty in
maintaining constant force in long tasks, we decided to include words repetition
in the other 4 tasks.

Fig. 1. The seven tasks segmented from the sheet filled by a PD subject and the
handwriting dynamic signals captured for task1.

Speech wave signals were recorded using the internal microphone of the lap-
top (hp Elittbook 8570 w). Two channels sounds with 16-Bit depth and 44.1
KHz sampling rate were produced and saved. Two tasks were considered: 1) the
participants were instructed to produce a sustained vowel ‘a’ (it is easy to be
reproduced by elderly subjects and provides information about the phonatory
and articulatory processes of speech production, and it was shown in [7] that the
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vowel ‘a’ reports the highest PD detection accuracy comparing to other vowels).
2) Participants were asked to read loudly a text appearing on the PC screen writ-
ten with their familiar languages (such speech task permit judgments of speech
rate, phrase length, voice quality, resonance, and precision of articulation, and
also permits assessment of the prosodic features of speech [8]).

Many other complex tasks can more involve cognitive and functional issues
and may better define the disease, but our main focus was on motor skills and
the selected tasks can reflect most of the motor symptoms and can be easily
reproduced by elderly people. Such tasks (except the sustained vowel) can also
be used to assess dementia since they require linguistic skills, attention, and
memory.

3 Single Modality PD Early Detection

3.1 Handwriting Modality

In literature, some works such as [4] focused on handwriting analysis for sup-
porting early PD diagnosis where only patients with early to mild degrees of
disease taken from PaHaW dataset [1] were studied. In our previous work [5]
the main contribution was to find a feature selection approach for an improved
PD early detection based on handwriting features suggested in [1]. Advanced
language independent handwriting markers based on kinematic, stroke, pres-
sure, entropy, and intrinsic features were extracted from the “on-paper” periods
in each handwriting task (samples taken from HandPDMultiMC), forming a
global feature vector of size 189. An SVM model was trained on these features,
where a two-stage feature selection (FS) approach was applied. It was shown
that handwriting can be a tool for PD early diagnosis with a 96.87% prediction
accuracy when a set of kinematic, pressure, and correlation between kinematic
and pressure features are used.

However, since hand-crafted features model required expert knowledge of the
field, and since the database is small, pen-based features were learnt by means
of deep learning where short term analysis is applied to avoid losing important
information while applying global features extraction [6]. Two based learning
models for end to end time series classification were proposed (the 2D CNN
and the 1D CNN-BLSTM), where the whole handwriting dynamic signals have
been studied so we can extract both in-air and on-surface features. Two new
approaches were proposed to encode each handwriting dynamic signal into sepa-
rate image for the 2D CNN model (spectrogram and modified Gramian Angular
Field (GAF)), and compared to the approach proposed by Pereira et al. [3]
that encode all the handwriting dynamic signals into single image. For the 1D
CNN-BLSTM model, the raw signals are directly used. The number of hand-
writing dynamic signals k is a hyper-parameter varying between 1 and 7. Some
pre-processing steps were applied: getting the same writing direction, and nor-
malizing the X and Y coordinate. We have demonstrated the importance of both
the 1D CNN-BLSTM, and the 2D CNN model with spectrograms as input in
PD detection ( Fig. 2)). These models have the ability to tackle the variation of
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information in time series either by explicitly considering the local short term
information on the time axis of the non-stationary online handwriting signals or
by dealing with raw time series directly. To cope with the limited data, and to
improve our deep models, some data augmentation techniques (jittering, scal-
ing, time-warping, and synthetic data generation) were applied on handwriting
dynamic signals to generate new synthetic samples. We have found that com-
bining both jittering and synthetic data augmentation techniques with the 1D
CNN-BLSTM model yields 97.62% classification accuracy [6]. This diagnosis sys-
tem has been validated on PaHaW database (closest to our database in term of
handwriting dynamic signals compared to NewHandPD [3]), and it was found
the importance of Z coordinates feature and the relevance of the results obtained
(results are consistent on different datasets) [6].

Fig. 2. The left model refers to a single-task 2D CNN architecture. This architecture
takes as input k two dimensional representations of 1D time series. The right model
refers to a single-task 1D CNN-BLSTM architecture on a multivariate time series of
length n. The output of the 1D CNN is fed to a BLSTM as a sequence of length n/4.

3.2 Speech Modality

Several studies in literature focused on the early detection of PD based on speech
analysis such as Rusz et al. [14] who studied early staged PD patients with mean
H&Y of 2.20±0.5. In [18], we have defined a language and task-independent
acoustic feature set for assessing the motor disorders in PD patients, and have
studied the influence of sampling rate and unvoiced sounds on the performance.
Only phonation and articulation handcrafted features are studied, where the
prosody features are excluded since they depend on the language spoken [9].
Some pre-processing steps were applied prior extracting the low level descriptors
(LLD) features: removing silence at the start and the end of the speech, removing
speech that does not refer to the subject and each spontaneous intervention
introduced by the subject that was not directly related with the task, converting
the 2 channels signal into mono signal, and down-sampling signal rate. The
LLDs were extracted over 20ms frames shifted by 10ms from the processed voice
signal using openSMILE toolkit. Global features were obtained from the z-scored
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LLD features by applying some statistical functions. This resulted in 220 global
features per task. An SVM model was trained on these features, where the two-
stage feature selection approach proposed in [5] was applied. Unvoiced sounds
and sampling rate effects on classification performance of PD detection through
voice analysis were studied. Our language independent SVM model for PD early
diagnosis through voice analysis achieved 97.62% accuracy. It was found that
the effect of sampling rate on PD classification may depend on task and features
used. We have found that signals with low sampling rate (less than 16 KHz)
can lose valuable information that can play a good role in PD detection, where
a sampling rate of 24 KHz for sustained vowel ‘a’ and text reading (voiced
sounds) tasks, and 16 KHz for text reading task (voiced and unvoiced sounds) are
appropriate for the features analyzed. We have also demonstrated the importance
of unvoiced frames in PD detection and the importance of MFCC coefficients to
quantify the problems in speech articulation and to detect the disease [11].

4 Bimodal PD Early Detection

The main contribution of this work is to build a language independent bimodal
system for assessing the motor disorders in PD patients at early stages based on
handwriting and speech signals. Since there is no consensus on which modality
is more appropriate to help on PD diagnosis in early stages; so combining and
analyzing both signals may deliver a more accurate PD prediction. Two different
learning approaches were applied: feature-based and deep learning approaches.
Fusion of different modalities can be executed at different levels: data level, short
term or global features level, or decision level as shown in Fig. 3. In this work,
only global features and decision level fusion are applied since data-level and
short term feature-level fusions are used when the multiple raw data even come
from a same type of modality source, or are synchronized (which is not our
case) [13].

Fig. 3. Levels of bimodal fusion of handwriting with speech.

4.1 Feature-Based Approach

In this section, only global feature-level fusion is applied. Global feature-level
fusion consists in combining two global features vectors, one for each modality.
Each vector includes information of all tasks per subject. For each modality,
the set of global and language-independent features defined in Section 3 (189
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“on-paper” global handwriting features and the 220 global acoustic features)
are extracted for each task then combined together to form a single feature
vector. Two different methods are applied to combine the feature vectors in
each modality: calculate the average feature vector across the different tasks, or
concatenate the features vectors together. At a later stage, the features vectors
obtained from the 2 modalities will be concatenated to form a global bimodal
vector that will be used to detect PD using a SVM model with RBF kernel; where
feature-level Min-Max is applied on each feature separately before classification.
An overview of the SVM model trained on bimodal pre-engineered features is
shown in Fig. 4.

For speech, all the pre-processing steps described in Section 3 are applied
to the voice signal before extracting the LLD features, and speaker level z-
normalization is applied to the LLD features to reduce the effects of variations
that are not related to the disease (such as recording environment noise, speaking
styles or accent etc.). Based on the results obtained in [18], the sustained vowel
‘a’ is sampled at 24 KHz while the text reading is sampled at 16 KHz and
both voiced and unvoiced frames in the text reading are studied. The two-stage
feature selection approach defined in [5] is also applied here, where the first stage
consists of a pure statistical analysis of the data (where a sequence of significance
levels between 0 and 1 were tested and the one with the best validation accuracy
will be picked) and the second stage consists of applying a suboptimal approach
that provides a kind of benchmark of the relevance of the features in the desired
task.

Fig. 4. Levels of bimodal fusion of handwriting with speechSVM trained on bimodal
pre-engineered features using global feature-level fusion.

4.2 Deep-Learning Approach

The core idea is to train our model with language-independent bimodal feature
vector. For deep learning approach, to obtain language-independent feature vec-
tor, the model is trained on all the languages so the features will not be biased
toward a specific language. Handwriting and audio pre-processing steps men-
tioned in Section 3 are applied in this section. For text reading task, the best
sounds combination found in the first part of this work are also applied here.
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However, the voice sampling rate for both tasks is set to 8 KHz to reduce compu-
tational time, and memory usage. For all the deep models, the number of hidden
nodes is selected in a way to have a number of independent parameters smaller
than the number of data points available.

2D CNN/2D CNN. One of the deep learning models studied is the 2D CNN
model with spectrogram images (found in [6] and summarized in Fig. 2), which
is applied in this work in both modalities; where spectrogram 2D representation
for both raw handwriting signals and speech signals are obtained by applying
Short Term Fourier Transform (STFT). Blackman windowing function is applied,
where both the window length and the number of Fast Fourier Transform (FFT)
points are set to 256 and the overlapping rate is 50%. Lanczos technique [18] is
used to ensure that the number of input feature maps is identical for all sub-
jects by resizing the spectrogram images to 64Ö64 pixels resolution. This model
can be used for classification from a single image (voice case), or classification
from k measurements, where each measurement is encoded into spectrogram
image (handwriting case). The number of handwriting dynamic signals k is a
hyper-parameter varying between 1 and 7. Fusion of both handwriting and voice
modalities are executed here at two levels: global feature-level and decision-level.

Global feature-level fusion. The aim here is to form one feature vector with
information of all tasks per subject and per bio-signal. To do this, for each
modality individual 2D CNNs are trained per task and the feature maps obtained
by the convolutional layers (the output of the concatenated layer in Fig. 2)
for each task are combined together whether by averaging (model M1) or by
concatenating (model M2). The embeddings obtained from the 2 modalities are
concatenated to form a bimodal vector per subject. The created feature vectors
are then used to classify PD patients and HC subjects using fully connected
layers as shown in Fig. 5.

Fig. 5. Bimodal assessment using 2D CNN models and global feature-level fusion.
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Decision-level fusion. For voice modality, two cases are studied: the first case
(defined by case 1 and model M3) is when spectrogram is obtained for the whole
audio signal (image input of size 64Ö64 pixels and 23 hidden nodes), and the
second case (defined by case 2 and model M4) is when the audio signal is cropped
into segments of size 4s in order to increase the number of samples, and to
keep the nonlinear variation over the time axis as shown in Fig. 6. Spectrogram
is obtained for each segment separately (image input of size 249Ö129 pixels
and 1024 hidden nodes). All the training segment slices images are considered
independent training instances. Segmentation is also applied when predicting the
label of a testing time series. No window slices referring to the same participant
exist in training and test. To make the final prediction for each subject in the test
set, the S probability vectors outputs of the 2D CNN models are considered as a
Multivariate sequence of length S, and are used as input to a dynamic BLSTM
to decide the final prediction. Two multilayer perceptron (MLPs) models (MLP1
and MLP2) are applied, where each one is used to combine the probability vectors
(each of size 2) obtained by all tasks in each modality. At a later stage, another
MLP model (MLP3) is used to combine the probability vectors provided by each
of MLP1 and MLP2 (each of size 2) in order to get the final prediction (refer to
Fig. 6).

1D CNN-BLSTM/1D CNN-MLP. The 1D CNN-BLSTM model with raw
time series as input (see Fig. 2) is applied in this section. However, since we are
working with long audio signals, we have decided to crop the audio signal into
segments of fix length (4s) and apply the 1D CNN-MLP model (shown in Fig. 7).
This model is defined by M5. The number of handwriting dynamic signals k is a
hyper-parameter varying between 1 and 7. Fusion of both handwriting and voice
modalities are executed here at decision-level only since the feature maps in
both modalities differ (the features map in handwriting modality is a sequence
of length n/4 of vectors of size 32, where in voice modality the features map
is a vector of length 32Ön/4), in addition in each modality n varies from one
task to another and the number of audio segments of length 4s varies between
tasks. Individual 1D CNN-BLSTMs are trained for each task in handwriting
modality, where individual 1D CNN-MLPs followed by BLSTMs to make the
final prediction are trained for each task in voice modality as shown in Fig. 7.
Three different MLPs are also applied to get the final prediction.

1D CNN-BLSTM/2D CNN. The 1D CNN-BLSTMs and 2D CNNs models
are combined. For voice, 2D CNNs are applied with the STFT as input, where for
handwriting 1D CNN-BLSTMs are used with the raw signals as input. Fusion
of both handwriting and voice modalities are also executed here at decision-
level, and the number of handwriting dynamic signals k is a hyper-parameter
varying between 1 and 7. For voice modality, spectrogram is even obtained for the
whole audio signal (defined by model M6), or for each 4s segment as described
previously (defined by M7). Individual 1D CNN-BLSTMs and 2D CNNs are
trained for each task in handwriting and voice modalities respectively, where
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MLPs are also applied to combine and obtain the final prediction (similar to
Fig. 6, where the only difference is that for handwriting 1D CNN-BLSTMs are
applied with the raw signals).

Fig. 6. Bimodal assessment using 2D CNN models and decision-level fusion.

Fig. 7. Bimodal assessment using 1D CNN-BLSTM and 1D CNN-MLP models and
decision-level fusion.

4.3 Data Augmentation

Based on the findings in [6], data augmentation applied to time series improves
the 1D CNN-BLSTM model performance, and fails to improve the 2D CNN
model performance. In addition, we have found the power of combining both jit-
tering and synthetic data augmentation techniques with the 1D CNN-BLSTM
model. Based on these findings, and after selecting the best bimodal systems,
these techniques are applied. However, synthetic data generation is memory con-
suming method as long as we are working with long audio signals. For this reason,
only jittering data augmentation method is applied with voice modality; where
in handwriting modality, jittering is applied with 2D CNNs and the combination
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of jittering and synthetic data is applied with the 1D CNN-BLSTMs. For jitter-
ing, several values of noise intensity are studied in order to explore its effect on
classification. In [6] we have found that the best results are obtained when the
training data is augmented twice. This has also been adopted in this work.

5 Experiments and Results

In this work, bimodal assessment of PD is studied where both SVM model
trained on handcrafted features and deep models are studied and compared,
where the 42 subjects are divided into 3 folds, with the 66.66/33.33% (train-
ing/validation) proportion using stratified sampling method. Sequentially, one
fold is validated using the classifier trained on the remaining 2 folds. The total
accuracy is obtained by calculating the mean of all the folds accuracies. We have
decided not to use a separate test set due to a low database size. As a result
the validation set can be considered as test set. Starting with the SVM model
based on global feature-level fusion defined in Section 4.1. The significance level
with the best validation accuracy, the number of selected features and the per-
formances obtained with one and two stage feature selection methods are shown
in Table 1.

Table 1. Table of comparison between the performance obtained with one and two
stage feature selection methods.

Method 1 stage FS 2 stages FS
Average Acc (Sens,Spec) (%) 92.86 (95.24, 90.48) 100 (100, 100)

Significance level 0.0933
# Selected features 125 22

Concatenation Acc (Sens,Spec) (%) 97.62 (95.24, 100) 100 (100, 100)
Significance level 0.0350
# Selected features 356 55

The highest classification accuracy obtained with average method is up to 100%
for N=22 features (15 handwriting and 7 acoustic). For concatenation method,
also the highest classification accuracy obtained is up to 100% for N=55 features
(52 handwriting and 3 acoustic). Most of the selected features providing the
best performance for both methods include kinematic, pressure, and correlation
between kinematic and pressure features for handwriting modality, and MFCC
coefficients for voice modality; agreed with the conclusion found in [5] and [18].
From a clinical point of view, acceleration and stroke size are regulated by the
motor control of wrist and finger movement (mechanism inaccurate in PD).
Moreover, pressure features can give further detailed information that cannot be
obtained from kinematic features, hence, the significance to show the relationship
between kinematic and pressure features [5]. From the other side PD affects
the movement of the articulatory muscles resulting varying energy in frequency
bands of speech signal, and MFCCs coefficients can compute these variations
[18]. This can explain the frequent existence ofsuch features in the selected set.
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Moving to the bimodal assessment using deep learning, the three different
combinations described in Section 4.2 were studied and compared. The results
obtained are summarized in Table 2. For the 2D CNN model, decision-level fu-
sion method performs better than feature-level fusion. This can be related to
the fact that feature-level fusion is effective when time synchronized modalities
are to be fused (fusion of speech and eye movements for example) [13]. The best
models are selected and presented in Table 3 ; where the ‘All-tasks’ performances
of both modalities beside the bimodal system are shown. Once the best models
are selected, data augmentation techniques described in Section 4.3 are applied,
where for jittering a random additive scalar is sampled from a Gaussian distri-
bution with 0.3 STD for handwriting modality and 0.1 STD for voice modality.
The new time series are either used directly with the 1D CNN-BLSTM or con-
verted into spectrogram images with the 2D CNN. The ‘All-tasks’ performances
of both modalities beside the bimodal system are shown in Table 4, and Task-
wise accuracies in Table 5 respectively. Based on these results, we can see that
the best handwriting features combination found is the same as the one found
with handwriting modality [6], and it is clear how deep learned audio features
has no effect on PD detection, and how the results obtained when applying deep
learning to detect PD from raw speech signals are not satisfactory as the ones
obtained with handwriting analysis. It is challenging to learn acoustic deep mod-
els from raw signals and especially when very few convolutional layers are used
for acoustic feature extraction, which might be insufficient for building high-level
discriminative features [15]. In our case, since we are working with small dataset,
it will not be a good idea to enlarge our model. We investigate that it is more
efficient to build the model using low-level audio descriptors instead of applying
the raw audio waveforms directly.

Table 2. Bimodal classification of PD and control performance, where the seven models
are defined in Section 4.

Model Fusion Modality Best handwriting Bimodal
method combination Features combination Acc (Sens, Spec) %

M1
Feature-level

Averaging Z 78.57 (85.71,71.43)
M2 Concatenating X+Y+Z+ Pre.+ Alt.+Azi. 61.9 (61.9, 61.9)

M3

Decision-level MLP

X+Y+Z+ Pre.+ Alt. 83.33 (87.71, 80.95)
M4 X+Y+Z+ Pre.+ Alt. 83.33 (87.71, 80.95)
M5 X+Y+Z+ Pre.+ Alt.+Azi. 88.1 (80.95, 95.24)
M6 X+Y+Z+ Pre.+ Alt.+Azi. 88.1 (80.95, 95.24)
M7 X+Y+Z+ Pre.+ Alt.+Azi. 88.1 (80.95, 95.24)

The log-spectrogram offers a rich representation of the temporal and spectral
structure of the input signal. The use of log-spectrograms is thus studied. Ac-
cording to Table 4, the results show how the accuracy performance is improved
from 52.38% to 71.43% after considering the log-spectrogram as input instead of
the raw signal. However, the achieved results are still non-satisfactory compared
to the results obtained with handwriting. A possible explanation of this behav-
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ior is that in spectrogram representations, it is difficult to separate simultaneous
sounds since they all sum together into a distinct whole [16]. This means that a
particular observed frequency in a spectrogram cannot be assumed to belong to
a single sound. In addition, moving a sound vertically in a spectrogram might
influence the meaning. Therefore, the spatial invariance that 2D CNNs provide
might not perform as well for this form of data [16]. Finally, periodic sounds
comprised of a fundamental frequency and a number of harmonics which are
most often non-locally distributed on the spectrogram. Finding local features
in spectrograms using 2D convolutions will be complicated in this case [16].

Table 3. Handwriting, audio and bimodal classification performance (Acc (Sen, Spec))
obtained with decision-level fusion method.

Model Hand. Perf. (%) Voice Perf. (%) Bimodal Perf. (%)
M3 83.33 (87.71, 80.95) 54.76 (76.19, 33.33) 83.33 (87.71, 80.95)
M4 83.33 (87.71, 80.95) 52.38 (61.9, 42.86) 83.33 (87.71, 80.95)
M5 88.1 (80.95, 95.24) 54.76 (23.81, 85.71) 88.1 (80.95, 95.24)
M6 88.1 (80.95, 95.24) 54.76 (76.19, 33.33) 88.1 (80.95, 95.24)
M7 88.1 (80.95, 95.24) 52.38 (61.9, 42.86) 88.1 (80.95, 95.24)

Table 4. Performance measures obtained after applying data augmentation and
decision-level fusion, where the best handwriting features combination are the ones
found in Table 2.

Model Aug. Technique Hand. Perf. (%) Voice Perf. (%) Bimoda Perf. (%)
Hand/Voice Acc (Sens, Spec) Acc (Sens, Spec) Acc (Sens, Spec)

M3 Jitter/Jitter 83.33(87.71,80.95) 57.14(95.24,19.05) 83.33(87.71,80.95)
M4 Jitter/Jitter 83.33(87.71,80.95) 71.43(76.13,66.67) 85.71 (71.43, 100)
M5 Jitter+Syn./Jitter 97.62(95.24,100) 52.38(33.33,71.43) 97.62 (95.24, 100)
M6 Jitter+ Syn./Jitter 97.62(95.24,100) 57.14(95.24,19.05) 97.62 (95.24, 100)
M7 Jitter+ Syn./Jitter 97.62(95.24,100) 71.43(76.13,66.67) 95.24(95.24,95.24)

Nevertheless, cropping the audio signal into short segments and getting the log-
spectrograms of each segment (short-term analysis) seems to be more effective
than getting the log-spectrograms of the whole signal (global analysis) with 2D
CNN (accuracy from 57.14% to 71.43%). We believe that this is due to the larger
number of samples needed to train the 2D CNN, and to the idea of maintaining
the nonlinear variation over the time axis. Data augmentation improves the 2D
CNN model performance when audio signal segmentation is applied, and fails to
improve the 1D CNN-MLP with raw signal and 2D CNN without segmentation
performance. In [6], we have found that data augmentation does not improve the
2D CNN model with online handwriting spectrograms since the augmented time
series are converted into spectrograms then normalized to a fixed dimension.
While here, since no normalization is applied on spectrograms, this means that
the model may benefit the most from the new generated signals.

Finally, from a quick analysis of the Task-wise accuracies presented in Table 5,
text reading task performs better than the sustained phonation vowel ‘a’ in PD
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detection. We believe that the text reading task is richer in terms of acoustic
and prosodic information, which makes them more convenient for automatic PD
detection in contrast to maximum phonation time of vowel ‘a’ which contains
less information [17]. The same conclusion was found in [18] when a SVM model
was trained on pure handcrafted acoustic features.

In our opinion, it may be more efficient to build a deep model using some low
level acoustic descriptors instead of using speech signal. From the other side, the
acoustic handcrafted features proposed in this work have achieved good results
in pure speech and in bimodal corpuses. In general, deep learning models are
basically selected to avoid handcrafted features extraction that needs an expert
knowledge of the field, or to achieve a better result by extracting deep features.

Table 5. Task-wise system and all-tasks system accuracies (in %) for various models
and training schemes presented in Table 4.

Task M3 M4 M5 M6 M7
Aug. technique Jitter Jitter Jitter/Syn. Jitter/Syn. Jitter/Syn.
Repetitive letter ‘l’ 69.05 69.05 59.52/47.62 59.52/47.62 59.52/47.62
Triangular wave 71.43 71.43 80.95/78.57 80.95/78.57 80.95/78.57
Rectangular wave 61.9 61.9 71.43/76.19 71.43/76.19 71.43/76.19
Repetitive “Monday” 59.52 59.52 78.57/76.19 78.57/76.19 78.57/76.19
Repetitive “Tuesday” 71.43 71.43 57.14/59.52 57.14/59.52 57.14/59.52
Repetitive “Name” 52.38 52.38 57.14/50 57.14/50 57.14/50
Repetitive “Family Name” 71.43 71.43 69.05/64.29 69.05/64.29 69.05/64.29
Aug. technique Jitter Jitter Jitter Jitter Jitter
Sustained vowel ‘a’ 52.38 66.67 52.38 52.38 66.67
Text reading 54.76 73.81 54.76 54.76 73.81
All tasks 83.33 85.71 97.62 97.62 95.24

6 Conclusions

The main contribution of this work is to build a language independent bimodal
system for PD early diagnosis by combining both handwriting and speech signals,
where this combination may be more appropriate to help on PD diagnosis in
early stages. Both SVM and deep learning models are studied and compared
in this work. For text reading task, the best combination (only voiced or the
combination of voiced and unvoiced sounds) found in our previous work [18] is
applied in this work with both approaches (SVM and deep learning). However,
the best sampling rates found in [18] are only applied with the SVM, where a low
sampling rate value (8 KHz) was applied with deep models (for memory usage
problem). The results obtained with the SVM model are better than the ones
obtained with deep learning. We have found how SVM with the combination
of information from both handwriting and speech modalities deliver a more
accurate PD prediction (accuracy up to 100% that needs to be confirmed on
larger scaled data) than pure handwriting (96.87% accuracy [5]) and speech
(97.62% accuracy [18]) analyses.
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The observations and conclusions obtained in this work are many. We have
found that decision-level fusion method performs better than feature-level fusion
in case of combining non-synchronized signals. In addition we have noticed how
it is challenging to learn acoustic deep models from raw signals and especially
when very few convolutional layers are used for acoustic feature extraction. Feed-
ing a CNN with 2D spectrograms performs better than the raw signals but the
results are still non-satisfactory. Higher number of training data samples and
preservation of the signal nonlinear variation over the time axis improve the
performance. Text reading task performs better than the sustained phonation
vowel ‘a’ due to the existence of acoustic and prosodic information. Data aug-
mentation methods applied on voice signals may increase deep learning model
performance when the raw signals are converted into 2D spectrograms and the
non-linearity over time axis is preserved. Deep models with the combination of
handwriting and speech modalities deliver same PD prediction accuracy as pure
handwriting analysis, and more accurate PD prediction than pure speech anal-
ysis. Since we believe that it may be more efficient to build deep models with
some low level acoustic descriptors as inputs instead of raw speech signals in
case we are working with small database, as a future work it will important to
build such model to approve the effectiveness of speech analysis in PD detection.
Despite the encouraging results obtained, there are still some works to do before
putting our PD detection bimodal model into clinical use due to the fact that
we have few subjects, in comparison with the real world where we would have
thousands of subjects, but the findings in this work can form a solid basis to
a future stage of research that needs to involve a much larger set of patients.
For this reason, the observations and conclusions obtained in this work and the
relevance of our system should be validated on a larger scaled database in fu-
ture work (since for the time being we can not find any another public bimodal
database (handwriting and speech) that can be used to validate our diagnosis
system).
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